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Abstract

Vaccine safety studies are often electronic health record (EHR)-based observational studies. These 

studies often face significant methodological challenges, including confounding and 

misclassification of adverse event. Vaccine safety researchers use self-controlled case series 

(SCCS) study design to handle confounding effect and employ medical chart review to ascertain 

cases that are identified using EHR data. However, for common adverse events, limited resources 

often make it impossible to adjudicate all adverse events observed in electronic data. In this paper, 

we considered four approaches for analyzing SCCS data with confirmation rates estimated from 

an internal validation sample: (1) observed cases, (2) confirmed cases only, (3) known 
confirmation rate, and (4) multiple imputation (MI). We conducted a simulation study to evaluate 

these four approaches using type I error rates, percent bias, and empirical power. Our simulation 

results suggest that when misclassification of adverse events is present, approaches such as 

observed cases, confirmed case only, and known confirmation rate may inflate the type I error, 

yield biased point estimates, and affect statistical power. The multiple imputation approach 

considers the uncertainty of estimated confirmation rates from an internal validation sample, yields 

a proper type I error rate, largely unbiased point estimate, proper variance estimate, and statistical 

power.
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1 | BACKGROUND

Observational studies using electronic health record (EHR) data are important in health care 

research and in postmarketing surveillance of drug and vaccine safety (Hersh, 2007; Platt & 

Carnahan, 2012; Platt et al., 2009; Safran et al., 2007; Weiskopf & Weng, 2013). Using EHR 

data, vaccine safety studies from the Vaccine Safety Datalink (VSD) and Postlicensure 

Rapid Immunization Safety Monitoring (PRISM) have helped inform national immunization 

policies (Baggs et al., 2011; Curtis et al., 2012; McNeil et al., 2014; Nguyen, Ball, Midthun, 

& Lieu, 2012). Like other observational studies, VSD and PRISM studies face significant 

methodological challenges since EHR data are collected as part of routine clinical care, and 

are then repurposed to conduct studies of adverse events related to vaccinations. 

Confounding and misclassification of adverse event are two methodological challenges 

when analyzing EHR data for vaccine safety research.

The self-controlled case series (SCCS) method was developed for vaccine safety studies to 

handle confounding (Farrington, 1995). The SCCS method is limited to only those 

individuals who experience adverse events (i.e., cases) in an exposed interval (i.e., risk 

interval) and/or unexposed intervals (i.e., control interval). By comparing the incidence rate 

of medically attended events in the exposed interval following a vaccination to the incidence 

rate in the unexposed intervals within an individual, SCCS design adjusts for the effects of 

time-invariant confounders by allowing each person to act as their own control. Primarily 

due to this advantage, the SCCS design has been widely used in vaccine safety studies 

(Hambidge et al., 2006; Miller, Waight, Farrington, Stowe, & Taylor, 2001; Stowe, Andrews, 

Ladhani, & Miller, 2016; Sun et al., 2012).

In typical vaccine safety studies using a SCCS design, presumptive adverse events are first 

identified by the presence of medical codes, such as International Classification of Diseases, 
Ninth Revision, Clinical Modification (ICD-9) codes or recent tenth revision ICD-10 codes 

in EHR data. Case misclassification occurs when the codes obtained from EHR data do not 

represent true cases of disease, such as when the diagnosis is miscoded, or when the 

diagnosis code was applied to a patient’s medical record but the medical condition was later 

ruled-out (Chubak, Pocobelli, & Weiss, 2012). To reduce misclassification bias, researchers 

will review the clinical provider notes of presumptive adverse events identified in EHR data. 

After this medical chart review, a positive confirmation rate (PCR) can be calculated as the 

proportion of adverse events confirmed among those presumptive adverse events reviewed 

with medical charts (Xu et al., 2014). As a measure of medical coding accuracy, the PCR 

will vary based on the type of adverse event, setting (e.g., inpatient hospitalization, 

emergency visit, primary care visit, etc.), and will also vary across different managed care 

organizations (MCOs) (Mullooly et al., 2004; Mullooly, Donahue, DeStefano, Baggs, & 

Eriksen, 2008). The PCR previously observed in vaccine safety studies has ranged between 

6.8% and 95.0% in VSD data (McNeil et al., 2016; Mullooly et al., 2008).

Many previous vaccine safety studies have used the SCCS design to study severe and rare 

adverse events. In these studies, researchers typically conduct chart reviews of all 

presumptive cases identified in risk and control intervals, and then reanalyze the data with 

only confirmed cases. However, more common adverse events have also been studied (Glanz 
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et al., 2016; Hambidge et al., 2014). When the number of adverse events identified by 

medical coding is relatively large and resources to review all the presumptive cases are 

constrained, researchers may only be able to review a sample of identified adverse events 

(internal validation sample). For these situations, methods are needed to inform how to apply 

information from a PCR based on just a sample of presumptive cases in examining the 

association between vaccination and adverse events.

Recently, Xu et al. (2014) developed a statistical model for analyzing SCCS data with an 

imperfect PCR that was considered as a known parameter without uncertainty. However, the 

PCR estimated from an internal validation sample has variance and researchers should 

consider this uncertainty in applying the PCR to those cases not reviewed. In addition, 

outcome (case) misclassification has sometimes been treated as a missing data problem 

(Cole, Chu, & Greenland, 2006; Edwards, Cole, Troester, & Richardson, 2013; Lyles et al., 

2011), and statistical methods have been developed by applying techniques for missing data 

such as multiple imputation (MI) (Rubin, 1987). In vaccine safety studies using EHR data, 

the lack of case confirmation information among those cases not reviewed can also be 

considered as a missing data problem. If cases for medical chart review are randomly 

sampled, then the absence of a case confirmation can be considered as missing at random 

(MAR), meeting the assumption of the MI approach.

In this paper, we considered four approaches for analyzing SCCS data with imperfect 

confirmation rates estimated from an internal validation sample: (1) an observed cases 
approach that analyzes presumptive cases without medical chart review, (2) a confirmed 
cases only approach that analyzes only confirmed cases from a sample of observed cases, (3) 

a known confirmation rate approach that estimates the PCR from a sample of adverse events, 

excludes those that are reviewed and not confirmed, and applies the estimated PCR to those 

that are not reviewed without considering the uncertainty of PCR estimates, and (4) a 

multiple imputation approach that estimates the PCR, excludes those that are not confirmed, 

and applies the estimated PCR to those that are not reviewed using a MI approach to take the 

uncertainty of PCR estimates into account. We conducted a simulation study to evaluate 

these four approaches using type I error rates, percent bias, Monte Carlo error (MCE), and 

empirical power.

2 | STATISTICAL METHODS

2.1 | Confirmation rate of electronically identified adverse events when only some of 
adverse events were reviewed with medical chart

When planning chart reviews of relatively common adverse events, researchers often 

consider the number of cases and exposure status of cases. In a SCCS design, an individual’s 

follow-up time is partitioned into a risk interval that occurs immediately after a vaccine 

exposure, and control intervals occurring prior to vaccination and/or after the end of the risk 

interval (Farrington, 1995; Xu et al., 2011; Xu, Hambidge, McClure, Daley, & Glanz, 2013). 

Cases that occur during the risk interval are called exposed cases and those occurring during 

a control interval are called unexposed cases. In multisite research, such as with the VSD, 

the participating sites where the cases are identified are also considered. If a certain number 

of cases (internal validation sample) are selected completely at random, study sites with 
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larger patient population will incur a larger burden of chart reviews while smaller study sites 

may not have any sampled cases to review. In addition, since the risk interval is usually 

shorter than the control interval, the number of unexposed cases is generally much larger 

than the number of exposed cases. Thus, researchers tend to review fewer charts from 

unexposed cases.

Let k denote the study site and e denote the exposure status with e = 1 for exposed cases and 

e = 0 for unexposed cases. Also, let Tk1 and Tk0 denote the total number of presumptive 

adverse events based on medical coding in the risk and control intervals for site k. Assume 

Gke out of Tke cases are reviewed and gke cases are confirmed after medical chart review. Let 

Rk1 and Rk0 denote the proportions of reviewed cases and let Rk1 and Rk0 denote the 

confirmation rates for exposed and unexposed cases for site k, respectively. The proportion 

of reviewed cases is Rke =
Gke
Tke

, and the confirmation rate can be estimated as follows:

qke =
gke
Gke

(1)

In our simulation study, we use k = S, M, and L to represent small, medium, and large study 

sites.

2.2 | Conditional Poisson models for analyzing SCCS data with imperfect PCR estimated 
from an internal validation sample

We considered four methods to analyze SCCS data, including a method accounting for the 

uncertainty of the estimated internal validation sample’s PCR. As in Xu et al. (2014), let yij 

denote the observed number of presumptive adverse events based on medical coding in 

period j for individual i. Among the total number of observed presumptive adverse events, 

let yijc present the number of correctly classified adverse events and let yijw represent the 

number of misclassified adverse events, so that yij = yijc + yijw. Let pij represent the PCR of 

a presumptive case based on the accuracy of medical coding in EHR data. The value of pij 

for a case can be assigned by qke depending on the study site and exposure status of the case. 

For example, if a case is from site k = L and period j has an exposure status e = 1, then 

pi j = qL1. We evaluated the following four approaches for estimating the vaccination effect 

when confirmation rates of observed cases are estimated from an interval validation sample:

2.2.1 | Observed cases approach that ignores misclassification—Assuming 

there is no misclassification of cases, Farrington proposed a conditional Poisson model 

(1995) to analyze SCCS data conditional on the total number of observed adverse events:

L1 β = ∏
i = 1

N
∏
j = 1

ni ti jexp Xi jβ

∑ j ti jexp Xi jβ

yi j

(2)
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where N is the number of individuals who experienced adverse events and ni is the number 

of time intervals for individual i. Also tij is person time (e.g., days), Xij is the row vector of 

time-varying covariates including the vaccination status (x1) and other indicator variables for 

age groups and seasonality. The column vector β contains corresponding coefficients β1, β2, 

β3,…, where β1 is the coefficient for the vaccination effect and the incidence rate ratio (IRR) 

is defined by IRR = exp(β1), and β2, β3, … are the coefficients for other covariates such as 

age groups and seasonality. Maximum likelihood estimates (MLEs) can be obtained by 

maximizing the log conditional likelihood function as shown in Equation (3) for the 

conditional Poisson model (2),

ln L1 β = ∑
i = 1

N
∑
j = 1

ni
yi j ln ti jexp Xi jβ − ln ∑

j = 1

ni
ti jexp Xi jβ (3)

2.2.2 | Confirmed cases only approach—Let R indicate whether a case underwent 

medical chart review (R = 1 for reviewed and R = 0 for not reviewed) and C indicate 

whether a reviewed case was confirmed (C = 1 for confirmed case and C = 0 for an 

unconfirmed case). A conditional Poisson model including only those cases that were 

reviewed and confirmed is:

L2 β = ∏
Ri j = 1

∏
j

ti jexp Xi jβ

∑ j ti jexp Xi jβ

yi jCi j

(4)

2.2.3 | Known confirmation rate approach—We estimated the confirmation rate and 

then applied it as a known parameter without uncertainty to those cases that were not 

reviewed. Cases that were reviewed but were unconfirmed were excluded. A modified 

likelihood function across individuals is:

L3 β = ∏
Ri j = 1

∏
j

ti jexp Xi jβ

∑ j ti jexp Xi jβ

yi jCi j

∏
Ri j = 0

∏
j

ti jexp Xi jβ

∑ j ti jexp Xi jβ

yi jpi j

(5)

where ∏Ri j = 1 ∏ j [
ti jexp(Xi jβ)

∑ j ti jexp(Xi jβ) ]
yi jCi j

 is the likelihood contribution from confirmed cases 

among those reviewed, and ∏Ri j = 0 ∏ j [
ti jexp(Xi jβ)

∑ j ti jexp(Xi jβ
]
yi jpi j

 is a pseudo-likelihood 

contributed from cases that were not reviewed. Here pij is equal to qke where case i is from 

site k and j period has an exposure status e, and qke is estimated from those reviewed. Thus, 

this approach allows the PCR to differ between exposed and unexposed cases. Note that, in 

the likelihood expression (5), pij is considered as a known parameter without uncertainty 
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(Xu et al., 2014). Maximum likelihood estimates (MLE) can be obtained by maximizing 

likelihood functions L1(β), L2(β), and L3(β). Approximate standard errors for the MLEs 

were computed using the delta method. We calculated the likelihood functions, obtained 

MLEs and their standard errors in SAS PROC NLMIXED. MLEs and their standard errors 

were used in calculating type I error and empirical power.

2.2.4 | Multiple imputation (MI) approach—We estimated the confirmation rate and 

then applied it as a parameter with uncertainty to those not reviewed. Cases that were 

reviewed but were unconfirmed were excluded. If Gke < Tke, the uncertainty of qke exists and 

should be considered in the likelihood function calculation. Now we introduce a multiple 

imputation approach to estimate the vaccination effect in a SCCS design while considering 

the uncertainty of confirmation rates estimated from an interval validation sample. Similarly, 

the MI approach also allows the PCR to differ between exposed and unexposed cases. To 

achieve this goal, five steps were taken:

1. A logistic regression model with the interaction between site and exposure status 

for case confirmation among those being reviewed was fit:

Logit(prob(C = 1 k, e) = πke

where k indicated site and e indicated exposure status. In simulation study, we 

created six dummy variables to represent site (3 levels) and exposure status (2 

levels) for a case and these dummy variables were included in the logistic 

regression model; πke is the coefficient for site k and exposure status e to be 

estimated. Theoretically, other factors that may influence misclassification of 

cases can be included in the probabilistic model.

2. Coefficients and their variances and covariance were obtained from the 

probabilistic model in step 1: a vector π including πs0, πs1, πM0, πM1, πL0, and 

πL1 for sites k = S, M, L and exposure status e = 0, 1; covariance matrix Σ among 

πs0, πs1, πM0, πM1, πL0, and πL1 was also obtained.

3. For those cases that were not medically chart reviewed (R = 0) in site k with 

exposure status e, random values of πs0, πs1, πM0, πM1, πL0, and πL1 were 

drawn from a multivariate normal with a vector of means equal to π and the 

covariance matrix equal to Σ. Let εij denote the random value of πke for case i in 

k site and in interval j = e.

4. Then an indicator variable Zij was created by randomly drawing from a Bernoulli 

distribution with probability pij

pi j(Zi j = 1 site, exposure =
exp εi j

1 + exp εi j

5. The likelihood function across all cases is
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L4 β = ∏
Ri j = 1

∏
j

ti jexp Xi jβ

∑ j ti jexp Xi jβ

yi jCi j

∏
Ri j = 0

∏
j

ti jexp Xi jβ

∑ j ti jexp Xi jβ

yi jZi j

(6)

where ∏Ri j = 1 ∏ j [
ti jexp(Xi jβ)

∑ j ti jexp(Xi jβ) ]
yi jCi j

 is the likelihood contribution from 

confirmed cases among those that were reviewed, and 

∏Ri j = 0 ∏ j [
ti jexp(Xi jβ)

∑ j ti jexp(Xi jβ
]
yi jZi j

 is the likelihood contribution from cases that 

were not reviewed. Steps 3–5 were repeated 100 times for each SCCS dataset in 

our simulation. The point estimate of β1 is the average of β1s from 100 

replications and the standard error of β1 is the square root of the sum of the 

within-imputation variance and the between-imputation variance from the 100 

replications (Rubin, 1987). Point estimates of β1 and their standard errors were 

used in calculating type I error and empirical power.

3 | SIMULATION STUDY

3.1 | Simulation algorithm and analyses

The processes for simulating SCCS data have been described elsewhere (Xu et al., 2014). 

Briefly, 100,000 hypothetical individuals from three study sites were assumed to have a 

follow-up period of 365 days, consisting of a 42-days’ risk interval starting on vaccination 

day and control intervals before vaccination and after the risk interval. Among the 100,000 

individuals 10% were from a small site (S), 30% from a medium site (M) and 60% from a 

large site (L). Vaccination times were assumed to follow a uniform distribution with a range 

of 1–365 days. Observed presumptive adverse events were simulated per model (7).

yi j poisson
λi jc
pi j

, λi jc = E yi jc = ti jexp β0 + x1i jβ1 (7)

We simulated 24 scenarios of SCCS studies with different baseline adverse event rates, 

confirmation rates, proportions of reviewed cases, and vaccination effects. Two values of β0, 

−13 and −12, were used to achieve relatively common and rare baseline adverse events, 

yielding average baseline incidence rates 6.1 cases and 2.3 cases per one million person 

days, respectively. The coefficient for the true vaccination effect, β1, was chosen to be 0.69 

to represent an IRR of 2. We also established simulations with β1 = 0 to study the type I 

error rate. Table 1 shows the number of observed cases for different β0 values (determining 

the baseline rates of adverse events) and different confirmation rates when β1= 0.69. The 

number of cases ranged from two exposed cases from the small site with β0 = −13 to 201 

unexposed cases from the large site with β0 = −12.
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We examined both scenarios where the PCR of presumptive cases was the same and when it 

was different between exposed and unexposed cases. We represented the PCR as q0 for 

unexposed cases and q1 for exposed cases. We chose three pairs of q0 and q1: 50% and 50%, 

80% and 50%, and 50% and 80%. In these simulations, we assumed that charts of all cases 

from the small site were reviewed. Let RM0, RM1, RL0 and RL1 denote the proportions of 

reviewed cases at the medium and large sites in the unexposed and exposed intervals. The 

impact of five sets of proportions of reviewed cases was investigated (RM0, RM1, RL0, RL1): 

(100%,100%,100%,100%), (80%,80%,80%,80%), (50%,50%,50%,50%), (50%,100%,50%,

100%), and (80%,100%,80%,100%). The scenario where all cases were chart reviewed (i.e. 

(RM0, RM1, RL0, RL1) = (100%,100%,100%,100%)) can be considered the gold standard. 

Recall that all cases were reviewed for small sites (i.e., (RS0, RS1) = (100%,100%)). Among 

chart reviewed cases, the confirmed cases were assigned based on the confirmation rates 

established for each simulation. We assumed that the PCR is the same between reviewed and 

not reviewed cases in each exposed or unexposed interval for a study site.

For each scenario of β0 and PCRs and proportions of reviewed cases, we simulated 1000 

replications. We then analyzed these simulated datasets using the four analytic approaches 

described in the Statistical Methods section. The following evaluation metrics were obtained 

from the 1000 replicas.

3.2 | Evaluation metrics

3.2.1 | Type I error rate—The type I error rate was calculated as the proportion of 

replicated datasets where a statistical test falsely rejected a true null hypothesis (β1 = 0) at a 

significance level of 0.05.

3.2.2 | Percent bias—We provided the mean point estimate and the mean standard error 

for the vaccination effect coefficient (β1) over 1000 replicas. The percent bias was calculated 

as 100 × (mean β1 − true β1)/true β1, where true β1 is the simulated vaccination effect (set to 

β1= 0.69).

3.2.3 | Monte Carlo error (MCE) of β1—Monte Carlo error (MCE) of β1 is the 

between-simulation variability. MCE approximates the true variation of β1 (Koehler, Brown, 

& Haneuse, 2009). The MCEs were calculated as the standard deviation of the point 

estimate β1 over 1000 replicas and were compared to the mean standard error of β1
estimated by each of the four approaches.

3.2.4 | Empirical power—Empirical power was calculated as the proportion of datasets 

where a statistical test correctly rejected a false null hypothesis when simulations were 

performed under the true alternative β1= 0.69 (i.e., IRR = 2).

3.3 | Simulation results

The scenario where all presumptive cases were chart reviewed and analyzed with the 

confirmed cases only approach was considered the gold standard. We evaluated the 

performance of the four approaches by comparing each to this gold standard.
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3.3.1 | Type I error rates—Type I error rates are shown in Table 2. When the PCR was 

the same between the exposed and unexposed cases (i.e., q0 = q1 = 50%), the type I error 

rates from the gold standard were 4.2% and 3.5% for β0 = −12 and β0 = −13, respectively. 

The observed cases approach analyzing all electronically identified presumptive cases 

yielded type I error rates close to the nominal value (5%). However, when the PCR was 

different, the observed cases approach yielded type I error rates up to 78.9% with β0 = −12, 

which was far greater than the type I error rates near 5% from the gold standard.

Regardless of whether PCRs were different or the same between exposed and unexposed 

cases, if the proportions of observed cases reviewed with medical chart were the same for 

exposed and unexposed cases across sites, the confirmed cases only approach yielded type I 

error rates close to 5%. However, when the proportion of observed cases medically chart 

reviewed were different by exposure status, the confirmed cases only approach inflated the 

type I error rates up to 71.9%.

The known confirmation rate approach yielded a type I error rate close to 5% except when 

the proportions of reviewed cases were low. When (RM0, RM1, RL0, RL1) = (50%,50%,50%,

50%), q0 = 50% and q1 = 50%, the type I error rates were 11.5% and 9.6% for β0 = −12 and 

β0 = −13, respectively. The type I error rates also increased to near 10% when q0 and q1 

differed. Unlike the other three approaches, the MI approach always produced type I error 

rates between 3.1% and 5.3%.

3.3.2 | Mean (standard error) of β1, percent bias, and empirical power—The 

mean and standard error of β1 and percent bias are presented in Tables 3 and 4 for β0 = −12 

and β0 = −13, respectively. Empirical power is presented in Table 5. When β0 = −12 and q0 

= q1 = 50%, the gold standard yielded a percent bias of –1% with mean β1 = 0.68 and 

standard error = 0.17 (Table 3), and an empirical power of 95.9% (Table 5). Compared to the 

gold standard, the observed cases approach yielded smaller standard error of β1 (0.12 versus 

0.17 from the gold standard) (Table 3) and produced greater empirical power (100% versus 

95.9% from the gold standard) (Table 5). When β0 = −12 and q0 ≠ q1, the observed cases 
approach yielded biased estimates and empirical power deviated from the empirical power 

established with the gold standard method.

Regardless of whether the PCR was the same or different for exposed and unexposed cases, 

if the proportion of observed cases medically chart reviewed were the same for exposed and 

unexposed cases across sites, the confirmed cases only approach yielded an unbiased 

estimate for β1 but produced a larger standard error as the proportion of medically chart 

reviewed cases decreased. However, when the proportion of medically chart reviewed cases 

were different by exposure status, the confirmed case only approach overestimated β1 by up 

to 87% for β0 = −12 and it resulted in inflated empirical power: 100% versus 96.3 % from 

the MI approach for β0 = −12.

The known confirmation rate approach yielded an unbiased estimate for β1 regardless of the 

confirmation rate and the proportion of reviewed cases when cases were common (i.e., β0 = 
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−12). However, when the proportion of reviewed cases were low (e.g., 50%), this method 

resulted in smaller standard errors and inflated empirical power compared to the MI 
approach, especially when cases were rare (i.e., β0 = −13). For example, when RM0 = RM1 = 

RL0 = RL1 = 50% and β0 = −13, the known confirmation rate approach yielded a similar 

estimate to those from the MI approach, but a standard error of 0.29 smaller than the 0.35 

from the MI approach, and empirical power of 59.9%, which was greater than power of 

48.8% from the MI approach.

Regardless of whether the PCR was the same or different for exposed and unexposed cases 

and regardless of the proportion of reviewed cases, the MI approach always produced an 

estimate for β1 that was comparable to those from the gold standard. As expected, the 

standard error of β1 increased and the empirical power decreased with fewer reviewed cases. 

In our simulations, the standard error of β1 from the MI approach was always smaller than 

or approximately equal to the ones from the confirmed cases only approach, but never 

smaller than the gold standard or the known confirmation rate approach.

Monte Caro errors (MCE) are also presented in Tables 3 and 4 for β0 = −12 and β0 = −13, 

respectively. Among the four approaches, the observed cases approach had the largest 

sample size because it used all observed cases, followed by the known confirmation rate 
approach and the MI approach that used both confirmed cases and those not chart reviewed, 

and the confirmed cases only approach had the smallest sample size because it used only 

confirmed cases. Consistent with sample sizes, across all scenarios, the observed cases 
approach yielded the smallest MCE, followed by the known confirmation rate approach and 

the MI approach, and the confirmed cases only approach yielded the largest MCE. For three 

approaches: the observed cases approach, the confirmed cases only approach and the MI 
approach, MCE was comparable to the mean standard error of β1, indicating that these three 

approaches produced unbiased standard error of β1. When the proportion of reviewed cases 

were low (i.e., RM0 = RM1 = RL0 = RL1 = 50%), the known confirmation rate approach 

yielded MCE greater than the estimated standard error of β1 (e.g., 0.20 versus 0.17 for R0 = 

R1 = 50%) when β0 = −12, indicating that the known confirmation rate approach 

underestimated the standard error of β1. The difference was even greater when β0 = −13 

(e.g., 0.38 versus 0.29 for R0 = R1 = 50%).

The trend of bias was similar when the adverse event was rare (β0 = −13) except that the 

standard error of the vaccination effect was larger for β0 = −13 and the MI approach was 

even more effective in reducing type I error and bias as compared to the other three 

approaches.

4 | AN EXAMPLE

A recent study evaluating the safety of live attenuated influenza vaccine (LAIV) in children 

ages 2–17 years old during the 2003–2004 through 2012–2013 influenza seasons used the 

proposed approaches from this paper in an analysis of syncopal events following vaccination 

(Daley et al. 2018). We used a SCCS design to examine adverse events following LAIV 

Xu et al. Page 10

Biom J. Author manuscript; available in PMC 2019 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vaccinations. The day a child received LAIV was considered as the one-day risk interval; all 

other time during the influenza season was considered the control interval. Six VSD sites 

participated in the study (Marshfield Clinic; Kaiser Permanente (KP) Northwest; KP 

Washington; KP Northern California; KP Southern California; and KP Colorado), and 532 

presumptive cases of syncope were identified in the control interval (unexposed cases), and 

11 presumptive cases were identified in the risk interval (exposed cases). All 11 exposed 

were reviewed with medical charts. Among the 532 unexposed cases, 440 were from two 

large sites, KP Northern California and KP Southern California. Only 96 (22%) of the 440 

unexposed cases were reviewed from these two large sites, and all unexposed cases from 

smaller sites were reviewed. The PCRs were 45% and 69% for exposed and unexposed 

cases, respectively. Because exposed cases had lower PCR (i.e., more false exposed cases), 

we expected that the observed cases approach would overestimate IRR. We then analyzed 

the SCCS data using the four proposed approaches from this paper. The estimated IRRs 

(95% CIs) were 4.49 (2.47–8.16), 8.01 (3.28–19.56), 2.51 (1.04–6.05), and 2.52 (1.04–6.10), 

for the observed cases, confirmed case only, known confirmation rate, and MI approaches, 

respectively. Based on the results from our simulation study, we reported the estimated IRR 

from the MI approach since this approach yielded a proper type I error rate, a largely 

unbiased point estimate, a proper variance estimate, and appropriate statistical power (Daley 

et al., 2018). For the LAIV example, the number of exposed cases was far smaller than the 

number of unexposed cases (11 versus 532) and they were all reviewed. The number of 

exposed cases was the determining factor for the standard errors of coefficients; the 

uncertainty of PCRs of the unexposed was expected to have a limited impact on estimating 

the standard error of coefficients. Thus, the known confirmation rate and MI methods 

produced similar point estimates and confidence intervals.

5 | DISCUSSION

We conducted a simulation study to evaluate the performance of four approaches for 

analyzing SCCS data with misclassification of cases when confirmation rates are available 

from an internal validation sample. Clearly, analyzing observed cases alone resulted in 

biased estimates of the vaccination effect when the proportion of true observed cases 

differed between risk and control intervals. When the true PCR was equal in exposed and 

unexposed cases, the observed cases approach yielded unbiased estimates and greater 

statistical power. With this method, the use of misclassified cases increased the sample size. 

Although the increased sample size had no impact on type I error when PCR was the same 

for exposed and unexposed cases simply because the test was arranged to control the type I 

error (Table 2), it had impact on statistical power. Under the alternative hypothesis (IRR = 

2.0), the observed cases approach yielded smaller standard error of the coefficient (Tables 3 

and 4) and greater empirical power (Table 5) than the gold standard due to increased sample 

size. In addition, use of the misclassified cases (the observed cases approach) requires the 

assumption of equal PCRs. If the assumption is violated, the observed cases approach will 

yield biased estimates. PCRs will differ by exposure if either the underlying outcome 

specificity differs by exposure, or if there is a true exposure effect. Therefore, we do not 

recommend using the observed cases approach when misclassification of cases is present. 

The confirmed cases only approach produced unbiased estimates if the proportions of 
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observed cases that were medically chart reviewed were the same by exposure status, but it 

produced larger standard errors and thus lower empirical power compared to the gold 

standard and the MI approach. When all exposed cases are reviewed but only some 

unexposed cases are reviewed, such as in the LAIV safety study example, the confirmed 
cases only approach should never be considered because it is subject to large bias. The 

known confirmation rate approach may produce unbiased estimates, but the standard error of 

the vaccination effect is underestimated when the proportion of reviewed cases is low; thus, 

this method may lead to inflated empirical power. By contrast, regardless of whether the 

PCR is the same or different by exposure status and whether the proportion of observed 

cases chart reviewed differs by exposure status, the multiple imputation approach 

consistently yielded unbiased estimates of the vaccination effect and standard errors that 

increased as the number of charts reviewed decreased.

In a vaccine safety study, adjudicating all presumptive cases identified in EHR data and then 

including only confirmed cases in the final analyses is ideal (the gold standard in our 

simulation). When there is a relatively large number of presumptive cases and resources are 

limited, researchers may be able to limit the length of the control period, thus reducing the 

number of presumptive unexposed cases to review. Another option is to review only a 

proportion of cases, and we showed through simulation that to obtain an unbiased estimate 

using the confirmed case only approach, the proportion of reviewed cases must be the same 

for exposed and unexposed cases. However, compared to the confirmed case only approach, 

the inclusion of cases that are not medically chart reviewed can increase statistical power by 

using the MI approach regardless of how the internal validation sample is chosen. We 

emphasize the importance of using the MI approach when researchers chart review all 

exposed cases but only a proportion of unexposed cases. Other approaches can lead to a 

biased estimate and/or standard error of the vaccination effect. Consequently, it may lead to 

false conclusions about the association between vaccination and adverse events.

A key limitation to adjudicating all or a sample of presumptive cases identified in EHR data 

is that this approach presumes that outcome specificity may be < 100%, but assumes that 

outcome sensitivity is 100%. A primary reason for outcome false negatives in EHR data is 

differences in health care-seeking behavior (Chubak et al., 2012). However, with severe and 

acute adverse events, such as syncope or seizures in children, most people will rapidly seek 

care. Therefore, imperfect outcome sensitivity is likely more of a concern with less severe 

outcomes where there may be varying propensity for individuals to seek care.

There are several limitations to this study. First, age and seasonality are often associated 

with vaccination and adverse events in vaccine safety studies. We did not include covariates 

such as age and seasonality in the simulation. Second, we did not consider the potential 

misclassification of exposure. It is possible that some individuals’ vaccination status could 

be misclassified if an incorrect vaccine or vaccination date is recorded in EHR data. Third, 

we did not consider false negative cases because they were not identifiable using EHR data. 

If false negative cases existed and the false negative rate differed between exposed and 

unexposed cases, this type of misclassification could bias estimation of a vaccination effect.
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In conclusion, our simulation results suggest that the observed cases, confirmed case only, 

and known confirmation rate approaches may inflate the type I error, yield biased point 

estimates, and result in inflated or reduced statistical power when confirmation rates of cases 

are not perfect. The multiple imputation approach considers the uncertainty of estimated 

confirmation rates from an internal validation sample, yields acceptable type I error rates 

near 5%, produces largely unbiased point estimates and variance estimates, and yields 

proper statistical power. To address the influence of false positive cases in EHR data, 

researchers should consider using the multiple imputation approach when only a sample of 

presumptive cases can be validated.
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TABLE 1

Number of observed cases when risk interval = 42 days and β1= 0.69

β0

Confirmation rate (%) Number of observed cases

Unexposed case (q0) Exposed case (q1) S0 S1 M0 M1 L0 L1

−12

50 50 33 9 100 27 201 53

80 50 21 9  62 27 125 53

50 80 33 6 100 17 201 33

−13

50 50 12 3  37 10  74 20

80 50  8 3  23 10  46 20

50 80 12 2  37  6  74 12

S0, unexposed cases from the small site; S1, exposed cases from the small site; M0, unexposed cases from the medium site; M1, exposed cases 

from the medium site; L0, unexposed cases from the large site; L1, exposed cases from the large site.
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TABLE 2

Type I error rates when risk interval = 42 days, β1= 0 (incidence rate ratio = 1), and all cases at small sites 

were reviewed

Confirmation rates
(%)

Proportion of reviewed
cases (%) Type I error rates (%)

Unexposed
(q0)

Exposed
(q1) Observed cases Confirmed case only Known confirmation

rate Multiple imputation

RM0 RM1 RL0 RL1 β0= −12 β0= −13 β0= −12 β0= −13 β0= −12 β0= −13 β0= −12 β0= −13

50 50 100 100 100 100  3.7  5.0  4.2
a

 3.5
a NA NA NA NA

 80  80  80  80  3.0  2.9 5.2 4.4 3.9 3.4

 50  50  50  50  5.2  2.9 11.5 9.6 5.3 5.0

 80 100  80 100 16.3  8.0 4.9 3.9 4.8 4.3

 50 100  50 100 69.2 30.2 4.9 3.9 4.5 3.7

80 50 100 100 100 100 78.9 41.8  5.4
a

 3.4
a NA NA NA NA

 80  80  80  80  4.8  2.7 4.7 4.3 3.8 4.0

 50  50  50  50  3.5  2.2 9.8 7.9 4.6 4.7

 80 100  80 100 17.0  8.2 4.9 2.8 5.2 3.1

 50 100  50 100 71.9 33.9 5.4 3.3 5.3 3.5

50 80 100 100 100 100 69.0 24.2
 5.5

a
 3.5

a NA NA NA NA

 80  80  80  80  3.6  2.9 4.9 4.4 4.3 3.6

 50  50  50  50  4.0  2.4 7.9 7.9 4.4 5.2

 80 100  80 100 14.4 10.1 4.1 4.5 4.2 4.8

 50 100  50 100 68.0 34.5 5.5 4.6 4.9 4.1

a
Indicates gold standard of analysis of confirmed cases only when 100% of observed cases have been reviewed

RM0, proportion of reviewed unexposed cases from the medium site; RM1, proportion of reviewed exposed cases from the medium site; RL0, 

proportion of reviewed unexposed cases from the large site; RL1, proportion of reviewed exposed cases from the large site.
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TABLE 5

Empirical power when risk interval = 42 days, β1= 0.69 (incidence rate ratio = 2), and all cases at small sites 

were reviewed

Confirmation rates
(%)

Proportion of reviewed
cases (%) Empirical power (%)

Unexposed
(q0)

Exposed
(q1) RM0 RM1 RL0 RL1 Observed cases Confirmed case only

Known confirmation
rate Multiple imputation

β0= −12 β0= −13 β0= −12 β0= −13 β0= −12 β0= −13 β0= −12 β0= −13

50 50 100 100 100 100 100 90.7
 95.9

a
64.3

a NA NA NA NA

 80  80  80  80  93.7 56.8 96.4 63.2 95.5 60.0

 50  50  50  50  81.4 39.6 94.0 59.9 89.1 48.8

 80 100  80 100  99.7 80.2 97.3 61.6 97.0 62.1

 50 100  50 100 100 95.3 96.9 65.3 96.3 63.9

80 50 100 100 100 100 100 99.8
 97.0

a
65.9

a NA NA NA NA

 80  80  80  80  93.7 58.3 95.8 65.4 94.9 62.8

 50  50  50  50  81.0 42.5 93.3 63.0 88.4 54.9

 80 100  80 100  99.8 80.6 97.6 66.1 97.6 67.2

 50 100  50 100 100 95.9 96.2 63.6 96.1 64.6

50 80 100 100 100 100 35.8 16.3
 96.6

a
64.9

a NA NA NA NA

 80  80  80  80  92.4 57.8 95.7 63.3 94.7 62.0

 50  50  50  50  81.5 42.2 95.4 63.0 92.2 59.0

 80 100  80 100  99.6 82.7 96.0 65.6 96.2 67.2

 50 100  50 100 100 96.1 95.9 65.4 95.4 63.8

a
Indicates gold standard of analysis of confirmed cases only when 100% of observed cases have been reviewed

RM0, proportion of reviewed unexposed cases from the medium site; RM1, proportion of reviewed exposed cases from the medium site; RL0, 

proportion of reviewed unexposed cases from the large site; RL1, proportion of reviewed exposed cases from the large site.
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